51 research outputs found

    A mineralogical instrument for planetary applications

    Get PDF
    The mineralogy of a planetary surface can be used to identify the provenance of soil or sediment and reveal the volcanic, metamorphic and/or sedimentological history of a particular region. We have discussed elsewhere the applications and the instrument design of possible X-ray diffraction and X-ray fluorescence (XRD/XRF) devices for the mineralogical characterization of planetary surfaces. In this abstract we evaluate some aspects of sample-detector geometry and sample collection strategies

    The Mineralogical and Chemical Case for Habitability at Yellowknife Bay, Gale Crater, Mars

    Get PDF
    Sediments of the Yellowknife Bay formation (Gale crater) include the Sheepbed member, a mudstone cut by light-toned veins. Two drill samples, John Klein and Cumberland, were collected and analyzed by the CheMin XRD/XRF instrument and the Sample Analysis at Mars (SAM) evolved gas and isotopic analysis suite of instruments. Drill cuttings were also analyzed by the Alpha Particle X-ray Spectrometer (APXS) for bulk composition. The CheMin XRD analysis shows that the mudstone contains basaltic minerals (Fe-forsterite, augite, pigeonite, plagioclase), as well as Fe-oxide/hydroxides, Fe-sulfides, amorphous materials, and trioctahedral phyllosilicates. SAM evolved gas analysis of higher-temperature OH matches the CheMin XRD estimate of ~20% clay minerals in the mudstone. The light-toned veins contain Ca-sulfates; anhydrite and bassanite are detected by XRD but gypsum is also indicated from Mastcam spectral mapping. These sulfates appear to be almost entirely restricted to late-diagenetic veins. The sulfate content of the mudstone matrix itself is lower than other sediments analyzed on Mars. The presence of phyllosilicates indicates that the activity of water was high during their formation and/or transport and deposition (should they have been detrital). Lack of chlorite places limits on the maximum temperature of alteration (likely <100 C). The presence of Ca-sulfates rather than Mg- or Fe-sulfates suggests that the pore water pH was near-neutral and of relatively low ionic strength (although x-ray amorphous Mg-and Fe- sulfates could be present and undetectable by CheMin). The presence of Fe and S in both reduced and oxidized states represents chemical disequilibria that could have been utilized by chemolithoautotrophic biota, if present. When compared to the nearby Rocknest sand shadow mineralogy or the normative mineralogy of Martian soil, both John Klein and Cumberland exhibit a near-absence of olivine and a surplus of magnetite (7-9% of the crystalline component). The magnetite is interpreted as an authigenic product formed when olivine was altered to phyllosilicate. Saponitization of olivine (a process analogous to serpentinization) could have produced H2 in situ. Indeed, early diagenetic hollow nodules ("minibowls") present in the Cumberland mudstone are interpreted by some as forming when gas bubbles accumulated in the unconsolidated mudstone. Lastly, all of these early diagenetic features appear to have been preserved with minimal alteration since their formation, as indicated by the ease of drilling (weak lithification, lack of cementing phases), the presence of 20-30% amorphous material, and the late-stage fracturing with emplacement of calcium sulfate veins and minibowl infills, where they were intersected by veins. A rough estimate of the minimum duration of the lacustrine environment is provided by the minimum thickness of the Sheepbed member. Given 1.5 meters, and applying a mean sediment accumulation rate for lacustrine strata of 1 m/1000 yrs yields a duration of 1,500 years. If the aqueous environments represented by overlying strata are considered, such as Gillespie Lake and Shaler, then this duration increases. The Sheepbed mudstone meets all the requirements of a habitable environment: Aqueous deposition at clement conditions of P, T, pH, Eh and ionic strength, plus the availability of sources of chemical energy

    Diagenetic Mineralogy at Gale Crater, Mars

    Get PDF
    Three years into exploration of sediments in Gale crater on Mars, the Mars Science Laboratory rover Curiosity has provided data on several modes and episodes of diagenetic mineral formation. Curiosity determines mineralogy principally by X-ray diffraction (XRD), but with supporting data from thermal-release profiles of volatiles, bulk chemistry, passive spectroscopy, and laser-induced breakdown spectra of targeted spots. Mudstones at Yellowknife Bay, within the landing ellipse, contain approximately 20% phyllosilicate that we interpret as authigenic smectite formed by basalt weathering in relatively dilute water, with associated formation of authigenic magnetite as in experiments by Tosca and Hurowitz [Goldschmidt 2014]. Varied interlayer spacing of the smectite, collapsed at approximately 10 A or expanded at approximately 13.2 A, is evidence of localized diagenesis that may include partial intercalation of metal-hydroxyl groups in the approximately 13.2 A material. Subsequent sampling of stratigraphically higher Windjana sandstone revealed sediment with multiple sources, possible concentration of detrital magnetite, and minimal abundance of diagenetic minerals. Most recent sampling has been of lower strata at Mount Sharp, where diagenesis is widespread and varied. Here XRD shows that hematite first becomes abundant and products of diagenesis include jarosite and cristobalite. In addition, bulk chemistry identifies Mg-sulfate concretions that may be amorphous or crystalline. Throughout Curiosity's traverse, later diagenetic fractures (and rarer nodules) of mm to dm scale are common and surprisingly constant and simple in Ca-sulfate composition. Other sulfates (Mg,Fe) appear to be absent in this later diagenetic cycle, and circumneutral solutions are indicated. Equally surprising is the rarity of gypsum and common occurrence of bassanite and anhydrite. Bassanite, rare on Earth, plays a major role at this location on Mars. Dehydration of gypsum to bassanite in the dry atmosphere of Mars has been proposed but considered unlikely based on lab studies of dehydration kinetics in powdered samples. Dehydration is even less likely for bulk vein samples, as lab data show dehydration rates one to two orders of magnitude slower in bulk samples than in powders. On Mars, exposure ages of 100 Ma or more may be a significant factor in dehydration of hydrous phases

    CheMin: A Definitive Mineralogy Instrument in the Analytical Laboratory of the Mars Science Laboratory

    Get PDF
    An important goal of the Mars Science Laboratory (MSL '09) mission is the determination of definitive mineralogy and chemical composition. CheMin is a miniature X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that has been chosen for the analytical laboratory of MSL. CheMin utilizes a miniature microfocus source cobalt X-ray tube, a transmission sample cell and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D X-ray diffraction patterns and X-ray fluorescence spectra from powdered or crushed samples. A diagrammatic view of the instrument is shown. Additional information is included in the original extended abstract

    Centimeter to decimeter hollow concretions and voids in Gale Crater sediments, Mars

    Get PDF
    Voids and hollow spheroids between ∌1 and 23 cm in diameter occur at several locations along the traverse of the Curiosity rover in Gale crater, Mars. These hollow spherical features are significantly different from anything observed in previous landed missions. The voids appear in dark-toned, rough-textured outcrops, most notably at Point Lake (sols 302-305) and Twin Cairns Island (sol 343). Point Lake displays both voids and cemented spheroids in close proximity; other locations show one or the other form. The spheroids have 1-4 mm thick walls and appear relatively dark-toned in all cases, some with a reddish hue. Only one hollow spheroid (Winnipesaukee, sol 653) was analyzed for composition, appearing mafic (Fe-rich), in contrast to the relatively felsic host rock. The interior surface of the spheroid appears to have a similar composition to the exterior with the possible exceptions of being more hydrated and slightly depleted in Fe and K. Origins of the spheroids as Martian tektites or volcanic bombs appear unlikely due to their hollow and relatively fragile nature and the absence of in-place clearly igneous rocks. A more likely explanation to both the voids and the hollow spheroids is reaction of reduced iron with oxidizing groundwater followed by some re-precipitation as cemented rind concretions at a chemical reaction front. Although some terrestrial concretion analogs are produced from a precursor siderite or pyrite, diagenetic minerals could also be direct precipitates for other terrestrial concretions. The Gale sediments differ from terrestrial sandstones in their high initial iron content, perhaps facilitating a higher occurrence of such diagenetic reactions

    Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater

    Get PDF
    Tridymite, a SiO2 mineral that crystallizes at low pressures and high temperatures (>870 °C) from high-SiO2 materials, was detected at high concentrations in a sedimentary mudstone in Gale crater, Mars. Mineralogy and abundance were determined by X-ray diffraction using the Chemistry and Mineralogy instrument on the Mars Science Laboratory rover Curiosity. Terrestrial tridymite is commonly associated with silicic volcanism where high temperatures and high-silica magmas prevail, so this occurrence is the first in situ mineralogical evidence for martian silicic volcanism. Multistep processes, including high-temperature alteration of silica-rich residues of acid sulfate leaching, are alternate formation pathways for martian tridymite but are less likely. The unexpected discovery of tridymite is further evidence of the complexity of igneous petrogenesis on Mars, with igneous evolution to high-SiO2 compositions

    Low Hesperian P_(CO2) constrained from in situ mineralogical analysis at Gale Crater, Mars

    Get PDF
    Carbon dioxide is an essential atmospheric component in martian climate models that attempt to reconcile a faint young sun with planetwide evidence of liquid water in the Noachian and Early Hesperian. In this study, we use mineral and contextual sedimentary environmental data measured by the Mars Science Laboratory (MSL) Rover Curiosity to estimate the atmospheric partial pressure of CO_2 (P_(CO2)) coinciding with a long-lived lake system in Gale Crater at ∌3.5 Ga. A reaction–transport model that simulates mineralogy observed within the Sheepbed member at Yellowknife Bay (YKB), by coupling mineral equilibria with carbonate precipitation kinetics and rates of sedimentation, indicates atmospheric P_(CO2) levels in the 10s mbar range. At such low P_(CO2) levels, existing climate models are unable to warm Hesperian Mars anywhere near the freezing point of water, and other gases are required to raise atmospheric pressure to prevent lake waters from being lost to the atmosphere. Thus, either lacustrine features of Gale formed in a cold environment by a mechanism yet to be determined, or the climate models still lack an essential component that would serve to elevate surface temperatures, at least locally, on Hesperian Mars. Our results also impose restrictions on the potential role of atmospheric CO_2 in inferred warmer conditions and valley network formation of the late Noachian
    • 

    corecore